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Fuzzy Quantum Logics as a Basis for Quantum
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Representation of an abstract quantum logic with an ordering set of states S in
the form of a family L (S) of fuzzy subsets of S which fulfils conditions analogous
to Kolmogorovian conditions imposed on a s -algebra of random events allows
us to construct quantum probability calculus in a way completely parallel to
the classical Kolmogorovian probability calculus. It is shown that the quantum
probability calculus so constructed is a proper generalization of the classical
Kolmogorovian one. Some indications for building a phase-space representation
of quantum mechanics free of the problem of negative probabilities are given.

1. INTRODUCTION

Quantum mechanics is a probabilistic theory: in general it does not

predict results of individual experiments performed on microobjects, but only

probabilities of obtaining various results. These probabilities can be later

compared with experimentally established relative frequencies; since during
the last 70 years of development of quantum mechanics no significant discrep-

ancy has been found between values obtained from the theory and from

experiment, only a few doubt the validity and predictive power of quan-

tum theory.

In some experiments, however, the obtained relative frequencies do not

fulfil numerical constraints imposed by classical (Kolmogorov ian) probability
theory and the same applies to their theoretical counterparts interpreted as

probabilities. Such instances, usually connected with the violation of Bell’s

inequalities, strongly indicate the necessity of modification of the probability

calculus used in quantum mechanics.
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Actually, such a modification has already been done: In the quantum

logic approach to foundations of quantum mechanics (see, e.g., Beltrametti

and Cassinelli, 1981; PtaÂk and PulmannovaÂ, 1991) the Kolmogorovi an triple
( V , ^, P) consisting of a space of elementary events V , a Boolean s -algebra

^ of selected subsets of V , and a probability measure P is replaced by a

couple (L, p) consisting of a s -orthocomplete orthomodular poset L and a

probability measure (state) p defined on L. However, in the course of such

a generalization (Boolean algebras are special cases of orthomodular posets)

one element of Kolmogorov’ s (1933) original construction is lost: random
events are no longer subsets of the space of elementary events. In the Hilbert

space model they are represented by closed subspaces of a Hilbert space (or

orthogonal projections onto such subspaces), while in an abstract model they

are simply elements of an orthomodular poset. This missing element of the

construction not only makes the quantum probability calculus less similar to

the classical, Kolmogorovian, one, but also obscures relations between quan-
tum mechanics and classical statistical mechanics. In the author’ s opinion,

it also can be a source of difficulties encountered in attempts to represent

quantum mechanics on a phase space.

The aim of the present paper is to show the possibility of building a

quantum probability calculus on a suitably chosen families of fuzzy subsets
of elementary events in a way completely analogous to the orthodox construc-

tion of Kolmogorov.

2. QUANTUM PROBABILITY CALCULUS IN THE QUANTUM
LOGIC APPROACH

Following the traditional, although misleading terminology, by a quan-
tum logic2 we mean an orthomodular s -orthocomplete orthocomplemented

poset, i.e., a partially ordered set L containing the smallest element 0, the
greatest element 1, and equipped with an orthocomplementation mapping ’ :

L ® L such that the following conditions are fulfilled for any a, b, c P L:

(i) (a ’ ) ’ 5 a (idempotency)
(ii) If a # b, then b ’ # a ’ (order-reversing).

(iii) a Ù a ’ 5 0 (law of contradiction), and a Ú a ’ 5 1 (excluded

middle law), where Ù is the meet and Ú is the join with respect

to a given partial order in L.

2 In the author’ s opinion the name orthomodular algebra coined by Burmeister and MaË czynÂski
(1994) is much better since it stresses the algebraic, not logical character of this object, which,
moreover, describes not only quantum, but also classical systems.
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(iv) If ai # a ’
j for i Þ j (in which case we write ai ’ aj and call these

elements orthogonal), then the join Ú i ai exists in L ( s -orthocom-

pleteness condition).
(v) If a # b, then b 5 a Ú (a ’ Ù b) (orthomodular identity).

Elements of a logic represent dichotomic observables pertaining to the

physical system under study, i.e., observables that have only two possible

outcomes, usually interpreted as ª yesº and ª no.º Therefore, they also can be

thought of as representing properties of a physical system (possessed or not),
propositions (true or false), dichotomic tests, or yes±no questions. From the

probabilistic point of view they represent random events which, when a

suitable experiment is completed, are found either to have occurred or not

to have occurred.

Probability measure (called also state) on a logic L is defined as a

mapping p: L ® [0, 1] such that:

(i) p (1) 5 1 (normalization condition).

(ii) p ( Ú i ai) 5 ( i p (ai) for any sequence {ai} of pairwise orthogonal

elements of a logic L ( s -additivity).

A set S of probability measures (states) on a logic L is called ordering
iff p (a) # p (b) for all p P S implies a # b.

As mentioned in the Introduction, Boolean s -algebras of subsets of a
space of elementary events V which form a basis for Kolmogorovian probabil-

ity calculus are special cases of quantum logics in which partial order, ortho-

complementation, meets, and joins are represented, respectively, by set-

theoretic inclusion, complementation, unions, and intersections, 0 is repre-

sented by the empty set 0¤ and 1 by the whole space V . Of course in this

case the notion of a probability measure on a logic coincides with the tradi-
tional notion of Kolmogorovian probability measure.

The standard example of a ª genuineº quantum logic (i.e., logic that is

non-Boolean and can be used to describe genuine quantum systems) is a

Hilbertian quantum logic L(*) consisting of closed subspaces of a Hilbert

space * used to describe a quantum system or, equivalently, orthogonal

projections onto these closed subspaces. Probability measures on L (*) are
generated by density operators via the formula

p r Ã(AÃ) 5 Tr( r ÃAÃ) (1)

where r Ãis a density operator representing a state of a physical system and

AÃan orthogonal projector.

It follows from the very definition that probability measures on quantum

logics, in particular those defined by the formula (1) on Hilbertian quantum
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logics, satisfy all numerical constraints imposed on Kolmogorovian probabil-

ity measures: they are nonnegative, normalized, and s -additive on families of

pairwisely disjoint (in the language of quantum logics: pairwisely orthogonal)
elements. However, this surely does not mean that Kolmogorovi an probability

calculus which is based on Boolean s -algebras is an adequate tool for quantum

mechanics.3 This is particularly well seen in the quantum logic approach,

where several theorems were proved showing that various versions of Bell-

type inequalities are satisfied by probability measures defined on a quantum

logic iff this logic is a Boolean algebra (see, e.g., Santos, 1986; PulmannovaÂ

and Majernik, 1992; Beltrametti and MaË czynÂski, 1993a, b).

Apart from these numerical and ª structuralº differences between classi-

cal and quantum probabilities, there is one more difference mentioned already

in the Introduction: quantum random events are not subsets of the space of

elementary events, but mathematical objects of another kind. This does not

allow one to treat quantum random events as subsets of a phase space of a
physical system and probably is a source of difficulties in representing quan-

tum mechanics on a phase space.

In the quantum logic approach, states of any physical system are repre-

sented by probability measures on a logic and they form a convex set whose

extreme points represent pure states of a system. In the case of the phase
space description of classical statistical systems these extreme points are

Dirac measures concentrated on one-point subsets of a phase space, so they

are usually identified with points of a phase space of a system. Random

events are subsets of a phase space and each random event is in an obvious

way defined by a property of the physical system: it consists of these pure

states for which the given property holds. This allows one to interpret set-
theoretic unions and intersections of random events as being generated by

disjunctions and conjunctions of propositions about the studied physical

system in full accordance with the spirit of Kolmogorovian probability theory.

This is no longer true for quantum systems: properties of a quantum

system, represented by elements of a logic, are not subsets of sets of pure

states. In the next section we shall see, however, that there is a possibility
of representing elements of logics even of ª genuineº quantum systems by

fuzzy subsets of sets of pure states. This not only allows us to make quantum

probability calculus more similar to the classical, Kolmogorovian, one, but

also could be a first step toward constructing a phase-space representation

of quantum mechanics free from the well-known difficulties connected with

the appearance of negative probabilities.

3 Ballentine’ s (1986) conviction that he has ª refuted any and all claims that `classical’ probability
theory is not valid in quantum mechanicsº seems to be based on the superficial analysis in
which he took into account neither Bell-type inequalities nor the difference of structures on
which classical and quantum probability measures are defined.



Fuzzy Quantum Logics 285

3. FUZZY SET MODELS OF QUANTUM LOGICS

Let 8 Þ é be a fixed set called a universe. According to Zadeh (1965),

a fuzzy set A in 8 is defined by its membership function m A: 8 ® [0, 1] in
such a way that for any x P 8 the number m A(x) P [0, 1] represents the

degree of membership of x to the fuzzy set A. Giles (1976) noticed that fuzzy

sets arise naturally as a result of application of the infinite-valued è ukasiewicz

logic to evaluate the truth-value of a proposition ª x belongs to Aº , i.e., that

relations of fuzzy sets to the infinite-valued logic are the same as relations

of traditional sets (called crisp sets in the ª fuzzyº literature) to the classical
bivalent logic. Many authors identify fuzzy sets with their membership func-

tions and write A (x) instead of m A(x). This convention is adopted throughout

the rest of this paper.

It was proved by the author (Pykacz, 1994) [see also Mesiar (1994),

DvurecÏ enskij (1996), and Pykacz (1997a,b) for further generalizations] that

any quantum logic L with an ordering set of probability measures S can be
isomorphically represented as a family +(S) of fuzzy subsets of S such that:

(f.1) +(S) contains the empty set.

(f.2) +(S) is closed with respect to the standard fuzzy set complementa-
tion A8 5 1 2 A.

(f.3) +(S) is closed with respect to Giles unions of pairwise weakly

disjoint sets.

(f.4) The empty set is the only set in +(S) which is weakly disjoint

with itself.

where, for any two fuzzy sets A,B, their Giles union A t B and Giles
intersection A u B are defined, respectively, by the formulas

(A t B)(x) 5 min[A (x) 1 B (x), 1] (2)

(A u B)(x) 5 max[A (x) 1 B (x) 2 1, 0] (3)

the weak disjointness of two fuzzy sets means that their Giles intersection

is the empty set, and the isomorphism between L and +(S) is given by

the formula

L { a % A P +(S), A (s) 5 s (a) for all s P S (4)

Conversely, it was shown in Pykacz (1994) that any family +(8) of

fuzzy subsets of an arbitrary universe 8 which satisfies conditions (f.1)±(f.4)

is a quantum logic in the traditional sense partially ordered by the fuzzy set
inclusion: A # B iff for all x P 8 A (x) # B (x), and equipped with the

standard fuzzy set complementation as orthocomplementation.

Any family of fuzzy sets satisfying conditions (f.1)±(f.4) will be called

a quantum logic of fuzzy sets or simply a fuzzy quantum logic.
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Let us note that the requirement that a quantum logic representing

properties of a physical, classical or quantum, system should possess an

ordering set of probability measures S is, from a physical point of view, quite
natural: Probability measures represent states of a physical system. The only

way to establish experimentally an order relation between properties of a

physical system is to perform a number of experiments on a system when it

is in various states, which means that the set of states has to be ordering.

Moreover, if the set of states S were not ordering, one could divide an original

logic into suitable equivalence classes in order to make S ordering on the
ª newº logic. Let us also note that two standard examples of quantum logicsÐ

Boolean algebra @( G ) of Borel subsets of a phase space G in classical

statistical mechanics and Hilbertian quantum logic L(*) in quantum mechan-

icsÐ actually do possess ordering sets of probability measures.

The above-described representation of elements of an abstract quantum

logic L by family of fuzzy subsets of the set of states S allows us to compare
more easily logics of quantum systems and logics of classical statistical

systems. Both similarities and characteristic differences between these two

kinds of logics are particularly well seen when we restrict ourselves to the

set P consisting of pure states only. In both cases, each property a P L of

a physical system S defines, by the formula (4), a subset A # P consisting
of pure states in which the system S has the property a (in other words, the

set A is defined by the predicate ª has the property aº ). In the case of

classical statistical systems all subsets of P defined in this way are necessarily

traditional crisp sets since pure states in classical mechanics are dispersion-

free: A (s) 5 s (a) P {0,1}, which expresses the fact that a classical system

in a pure state either surely has or surely does not have any if its properties.
Therefore, the membership function of the set A # P is, in this case, a

characteristic function and the set A is crisp.

This is no longer the case in quantum mechanics, since here even pure

states are in general dispersive, so the set A # P defined in the way described

above is in general a genuine fuzzy, i.e., noncrisp set. Of course now the

sentence ª the system S has the property aº belongs to the domain of infinite-
valued logic and as its truth value A (s) 5 s (a) it can assume any number

from the unit interval. Equivalently, and in accordance with the very spirit

of the fuzzy set theory, we can say that even when a quantum system is in

a pure state, it ª hasº any of its properties to the degree represented numerically

by a number from the interval [0,1].

Nevertheless, if we assume that properties of a physical system form a
quantum logic, in both cases the family +(P) consisting of all fuzzy subsets

of P defined in the above-described manner obviously has to satisfy conditions

(f.1)±(f.4). In the phase space description of a classical statistical system

+(P) can be identified with a Boolean s -algebra @( G ) of Borel subsets of
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a phase space G since it is believed that any such subset represents a property

of a classical system. In the Hilbert space description of a quantum system

+(P) can be identified with a family of fuzzy subsets {A} of the unit sphere
S 1(*) in a Hilbert space * associated with a system. In this case the fuzzy

sets A # S 1(*) which form the quantum logic +(P) are defined by the formula

A ( C ) 5 ^ AÃC , C & (5)

where C P S 1(*) is a unit vector and AÃis an orthogonal projection in *.

However, in general it should also be possible to obtain a phase space
description of a quantum system by representing Hilbertian quantum logic

by a suitable family of fuzzy subsets of G instead of representing it by a

family of fuzzy subsets of S 1(*).

4. QUANTUM LOGICS OF FUZZY SETS AS A POSSIBLE BASIS
FOR QUANTUM PROBABILITY CALCULUS

Giles union and intersection and the standard fuzzy set complementation

coincide with traditional, set-theoretic operations when fuzzy sets are replaced

by crisp sets, and in this case weak disjointness coincides with the ordinary

disjointness of crisp sets. Therefore, the conditions (f.1)±(f.4) that define a
fuzzy quantum logic show remarkable similarity to the conditions that define

Boolean s -algebras of events in the Kolmogorovi an probability theory. The

difference between the condition (f.3) and Kolmogorovian requirement that

a s -algebra of events should be closed with respect to countable unions of

arbitrary, not only pairwise disjoint, sets seems to be unimportant since this

requirement of Kolmogorov is superfluous: Probability measures are assumed
to be s -additive on pairwise disjoint, not arbitrary sequences of sets and it

is possible to construct reasonable ª classicalº probability theory with this

requirement being suitably modified [for a detailed discussion of this problem

see Fine (1973)]. Since the condition (f.4) in the domain of crisp sets is

trivially satisfied (the empty set is the unique crisp set which is disjoint with

itself), we infer that a notion of a fuzzy quantum logic is in a sense a
ª minimalº generalization of the notion of an algebra of random events to a

family of fuzzy sets endowed with Giles connectives, which allows one to

build a reasonable probability calculus.

It should be mentioned that it is possible to build a fuzzy probability

theory using, instead of Giles operations, other operations chosen from the

vast family of fuzzy unions and intersections. This was actually done in the
number of papers (see, e.g., Zadeh, 1968; Klement et al., 1981; Piasecki,

1985; Mesiar, 1992) in which a fully-fledged fuzzy probability theory was

developed. This theory was also, especially in the papers of the ª Slovak

Schoolº too numerous to be listed here [see, e.g., RiecÆan (1992) and references
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listed therein, or the bibliographical essay by Cattaneo et al. (n.d.)], used to

investigate various typically ª physicalº notions. However, in the majority of

these papers their authors use the original Zadeh (1965) operations, which
cannot be used to build fuzzy set models of quantum logics, since they, when

combined with the standard fuzzy set complementation, do not satisfy the

excluded middle law and the law of contradiction for any genuine fuzzy set

(Pykacz, 1994; Mesiar, 1994). Therefore, it seems that only Giles operations,

or other operations isomorphic to them pointwisely defined on fuzzy sets by

nilpotent triangular (co)norms, can be sensibly used to build fuzzy set models
of quantum logics (Mesiar, 1994; Pykacz, 1997a) and therefore also to con-

struct fuzzy set models of quantum probability spaces.

One problem still deserves explanation: There do exist ª genuineº (i.e.,

non-Boolean) quantum logics consisting of traditional, crisp sets, so-called

concrete logics (see, e.g., PtaÂk and PulmannovaÂ, 1991). They are defined as

families of crisp sets that satisfy crisp counterparts of the conditions (f.1)±(f.3)
[as we already noticed, the crisp counterpart of the condition (f.4) is always

satisfied]. The natural question arises of why we should bother at all about

fuzzy sets, and why not be satisfied with concrete logics in attempts to make

quantum probability calculus more similar to the classical, Kolmogorovian,

one? The answer can be found on the pp. 23 and 24 of PtaÂk and PulmannovaÂ

(1991): Every concrete logic has a (strongly) ordering set of dispersion-free

states, but it follows from Gleason’ s theorem that a Hilbertian quantum logic

L (*) with dim(*) $ 3 does not possess any dispersion-free state. Therefore,

we cannot expect that concrete quantum logics could be of any value for

studying properties of really existing quantum systems which are represent-

able in Hilbert spaces.
After replacing abstract quantum logics that appear in the foundations

of quantum probability calculus by families of fuzzy sets which satisfy

conditions (f.1)±(f.4) one obtains, at the price of allowing fuzzy sets to come

into play, a perfect parallelism between Kolmogorovi an probability calculus

applied to classical statistical systems and quantum probability calculus

applied to quantum systems: In both cases random events are represented by
subsets of sets of pure states of physical systems and they are defined by

properties of these systems. Conjunctions and disjunctions of properties of

physical systems define intersections and unions of respective subsets. How-

ever, it should be stressed that, contrary to the situation encountered in

classical statistical physics, in quantum physics the results of these operations

do not always belong to a (fuzzy) quantum logic even if this logic is a
lattice [see Pykacz (1994, 1997b) for a detailed discussion of this problem].

Therefore, the usage of joins and meets in order to construct ª compoundº

quantum random eventsÐ a common practice in quantum probabilityÐ

instead of Giles unions and intersections can be a source of serious mistakes.
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As already mentioned, it should be possible in general to represent

properties of a quantum system by a family of fuzzy subsets of a phase space

G instead of fuzzy subsets of a unit sphere S 1(*) of a Hilbert space *,
obtaining in this way a phase-space representation of a quantum system.

Such a representation could be obtained in suitable cases, e.g., by mapping

points C P S 1(*) onto points ( ^ p & C , ^ q & C ) P G with ^ p & C , ^ q & C being,

respectively, mean values of the momentum and the position operators in a

state C . A value A ( ^ p & C , ^ q & C ) of a membership function of a fuzzy subset

A , G that represents a property a should in this case be given by the formula
(5), i.e.,

A ( ^ p & C , ^ q & C ) 5 ^ AÃC , C & (6)

where AÃP L(*) is an orthogonal projection representing the property a in the

Hilbertian quantum logic L(*). Of course, numerical values of all probability

measures defined on a logic of properties of a quantum system have to remain
the same since it makes no difference whether properties of a system are

represented by closed subspaces of a Hilbert space, orthogonal projections

onto these subspaces, fuzzy subsets of the unit sphere in a Hilbert space, or

suitably defined fuzzy subsets of a phase space.

Therefore, the above-sketched phase-space representation of quantum

systems should be free of such counterintuitive ingredients like negative
probabilities which have plagued phase-space representations of quantum

mechanics from the very birth of this idea. In the author’ s opinion the necessity

of working with s -orthomodular posets of fuzzy subsets instead of Boolean

s -algebras of crisp subsets of a phase space is not too high price to be paid

for this.
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